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A B S T R A C T  

We consider the following question: For a Banach space X, how many 
closed balls not containing the origin can cover the sphere of the unit ball? 
This paper shows that: (1) If X is smooth and with dimX -- n <: c~, in 
particular, X = R n, then the sphere can be covered by n + 1 balls and 
n +  1 is the smallest number of balls forming such a covering. (2) Let A be 
the set of all numbers r > 0 satisfying: the unit sphere of every Banach 
space X admitting a ball-covering consisting of countably many balls not 
containing the origin with radii at most r implies X is separable. Then 
the exact upper bound of A is 1 and it cannot be attained. (3) If X is a 
Gateaux differentiability space or a locally uniformly convex space, then 
the unit sphere admits such a countable ball-covering if and only if X* 
is w*-sepaxable. 

1. I n t r o d u c t i o n  

For a finite d imens ional  (resp. separable infinite d imensional)  Banach  space, it 

is clear tha t  the sphere S x  of the un i t  bal l  of X can always be covered by 

finitely (resp. countably)  m a n y  closed balls not  conta in ing  0 wi th  a rb i t ra r i ly  

small  radius,  since S x  is compact  (resp. separable).  Bu t  there  are still some 

na tu r a l  and  in teres t ing quest ions t ha t  arise. For example: 

PROBLEM 1 : I f  X is finite dimensional, is there a smallest number of balls not 

containing the origin whose union covers the unit sphere S x  of X ? 
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PROBLEM 2: Suppose that r > 0 satisfying: if every Banach space X admits 

a sequence of balls not containing the origin with radii at most r whose union 

covers the unit sphere Sx  of X,  then X is separable. Is there an exact upper 

bound for a11 such r ? 

PROBLEM 3: By the Separation Theorem, we can show that if Sx  is covered 

by a sequence of balls not containing O, then the dual X* of X is w*-separable. 

Is the converse true? 

This paper focuses our attention on the above questions and presents the 

following results: 

For the first question (Problem 1), it is shown that  if X is smooth and with 

dim X = n < co, then the smallest number is n + 1. The answer to the second 

question (Problem 2) is the exact upper bound is 1 but it cannot be attained 

in general through proving that  for every 0 < r < 1, if the sphere Sx  admits a 

ball-covering which consists of countably many balls with radii at most r then X 

is separable, and that  l ~ admits such a countable ball-covering with radii 1. For 

the last question (Problem 3), it is shown that  if X is a Gateaux differentiability 

space (GDS) or X is locally uniformly convex, then Sx  admits such a countable 

ball-covering if and only if X* is w*-separable. 

Now, we recall some definitions. The letter X will always be a real Banach 

space, B x  its unit ball, and Sx  the sphere of Bx.  We denote by B(x, r) the 

closed ball centered at x with radius r; if no confusion arises, B(x, r) also denotes 

the open ball. For a set A C X, coA stands for the convex hull of A. 

Definition 1.1: By a ball-covering of Sx,  we always mean a family of closed balls 

not containing the origin whose union contains Sx.  If a ball-covering consists 

of countably many balls, then we call the family a countable ball-covering. A 

ball-covering {B~}~eh is said to be symmetric, if {--B~}~eh = {B~}~eh. We say 

that  a ball-covering has radius r if all balls from the covering have radii at most 

r .  

Definition 1.2: (i) A continuous convex function defined on an open convex set 

D of a Banach space X is said to be Gateaux (resp. Fr~chet) differentiable at 

x C D if there exists x* E X* such that  for every y C X, 

irs(x + ty) -  _ (x,, y)]j lira ~ 0 
t \ o  t 

(resp. lim sup [ .f(x + t y > -  f (x)  - (  , y ) ] : 0 ) . x *  
t'NO yEBx t 
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In this case, the corresponding x* is called the Gateaux (resp. Fr6chet) 

derivative of f at x. 

(ii) A Banach space X is said to be a Gateaux differentiability space (resp. 

an Asplund space) if every continuous convex function defined on a nonempty 

open convex set D of X is Gateaux (resp. Fr6chet) differentiable at each point 

of a dense (resp. dense G~-) subset of D. We say that  X is Gateaux (Fr6chet) 

smooth, if its norm is Gateaux (Fr6chet) differentiable everywhere off the origin. 

(iii) Let C be a nonempty bounded closed convex set of a Banach space X. 

A point x C C is said to be an exposed point (resp. a strongly exposed point) 

of C, if there exists x* E X* such that  (x*,y) < (x*,x) for all y in C with 

y r x (resp. the slices {y e C : (x*,y) > (x*,x) - a}~>0 form a local base 

of C at x), and the corresponding functional x* is called an exposing (resp. a 

strongly exposing) functional of C and exposing (resp. strongly exposing) C at 

x. If the convex set C is contained in X*, then we define the w*-exposed point 

(resp. w*-strongly exposed point) of C analogously with the functional x* in X 

instead of X**. 

PROPOSITION 1.3 ([Ph]): A Banach space X is a Gateaux differentiability 

space if and only if every w*-compact convex set in X* is the w*-closed convex 

hull of its w*-exposed points. 

PROPOSITION 1.4 ([Fab, Th. 2.12]): I f X  is a Gateaux differentiability space, 

then the w *-compactness coincides with the w *-sequential compactness in X *. 

PROPOSITION 1.5 ([Ph]): Suppose that p is a Minkowski functional detlned on 

the space X.  Then p is Gateaux (resp. Fr@chet) differentiable at x and with the 

Gateaax (resp. Frdchet) derivative x* if and only if x* is a w*-exposed (resp. 

w*-strongly exposed) point of C* and exposing (resp. strongly exposing) by x, 

where C* is the polar of the level set C =- {y E X : p(y) ~_ 1}. 

2. T h e  smallest  ball number  of  a ba l l -cover ing  in f ini te  d i m e n s i o n a l  

spaces 

Recall a nonempty bounded set A C X* is said to be a norming set of X, if there 

exists a > 0 such that  p(x) - CA(X) = supx~A(X*,X ) > allXll for all x E X. In 

this section, we first deal with symmetric ball-coverings. 

LEMMA 2.1: Suppose that d i m X  = n < oc. Then: 

(i) B x .  has at least 2n exposed points which forms a symmetric norming set 

of X .  
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(ii) Bx  has exactly 2n exposed points if and only if X is isometric to l'~. 

Proof: (i) Since dim X = n, X is a Gateaux differentiability space. By Proposi- 

tion 1.3, B x .  is the closed convex hull of its exposed points. There must be n ex- 

posed points {x~, x~, . . . ,  x n} in the sphere Sx* which are linearly independent. 

The symmetry of Bx* implies that all {+x~, •  +x*} are exposed points 

of Bx*. Therefore, the n-dimensionM polyhedron P = co{ix~, i x ~ , . . . ,  i x * }  

satisfies 0 6 int P. Thus, P is a norming set of X. 

(ii) The sufficiency is trivial since l[* has exactly 2n exposed points 

{ i e l ,  +e2 , . . . ,  +en}, where {ei}n_l is the standard unit vector basis of l~. 

Necessity. Suppose Bx  has exactly 2n exposed points {ix1,  +x2 , . . . ,  +x,~}, 

where {x l , . . . ,  Xn} C Sx  are linearly independent. Then 

Define T: X -~ l~ by 

B x  = co{+xl , . . . ,  +xn}. 

n for x = ~= lA~ x i  6 X. 

T B x  = Bl~, and which in turn implies T is an isometry from X to l~. 

T x  -~ (,~1, , ~ 2 , . . . ,  )~n) 

This explains why the linear mapping T satisfies 
| 

THEOREM 2.2: Suppose that X is an n-dimensional Banach space. Then: 
(i) Sx  has a symmetric ball-covering consisting of 2n balls. 

(ii) Every symmetric ball-covering of Sx  contains at least 2n balls. 

Proof: (i) By Lemma 2.1 (i), Bx* contains at least 2n exposed points 

{ix~, +x~, . . . ,  i x*}  which forms a (symmetric) norming set of X. Thus, its 

support function p, 

* X* p ( x )  -~ m a x { l ( X l , X > I , . . .  ,l< n,X>l} ,  X e X 

defines an equivalent norm on X. Let a > 0 be such that p(x) >_ allxl[ for 

all x G X. Due to Proposition 1.5, for every pair +x*(1 < i < n), there exist 

i x i  E Sx  such that the derivatives of the norm at i x i ,  II i xi[l' = +x~. For 

each fixed 1 < i < n, let B~ be the open balls defined by 

B~: = B ( m i x i , m - 1 / m ) ,  r e = l , 2 , . . . .  ~,rn 

Clearly, B$ C B + for all m G N, and every B • has a positive distance ~,m i ,m+l  i,m 

1/m from the origin. We claim Sx  C U{Bi,im : 1 < i < n, m E N}. Given 
* n y 6 Sx,  there is x* E {• i}i=l such that (x*,y) _> allyll = a > 0. We 
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can assume x* = x~ for some 1 _< j _< n. Thus, there exist ~ > ~ and 

hj �9 Hj = {x �9 X :  (x; ,x)  = 0} such that  

y = flxj + hi. 

We want to show y �9 U~=I  B+ Otherwise, for every m �9 N, 
3 , m  �9 

m - 1 / m  < II-~xj  - yl l  = I1(.~ - Z ) x j  - h i l l .  

Thus 
-1/m <_ I I ( m  - Z ) x j  - h i l l  - m 

= I 1 ( ~  - Z ) ~ j  - h i l l  - ~ l l x j l l  

= I l x j  - t h j  II - I lzj  II _ Z 
t 

where t = 1/(m - ~). Letting m --* oc, we observe 

0 < Ilxjll'(hj) - Z = (x~,hj) - ~ = -/3 < 0, 

and this is a contradiction. Therefore, we have shown that  

Sx  C U{B~m : 1 < i < n ,m E N}. 

This explains why + {Bi,m} is an open covering of Sx.  Compactness of Sx 
further says that  there exists a sub-covering of Sx that  consists of finitely many 

B#~,m, say {Bi, 5 : 1 < . . . .  i < n, 1 < j < m} for some m r N. Non-decreasing 

monotonicity of {Bi,j} in j implies Sx C U{Bi,im : 1 < i < n}. 
(ii) Suppose that  {B~}~ea is a symmetric ball-covering of Sx.  By the Separa- 

tion Theorem, there exist A (the cardinal number of A) funetionals {x~ }~eA with 

{--x~}~eA = {x~}~eA C Sx* such that  for every x E S, there is x* E {x~}~sA 

satisfying (x; ,  x} > 0. Thus, the support function p of {x*}~<a defined by 

p(x) = sup(x*,x) for all x E X 
ecA 

is an equivalent norm on X, the closed convex hull of {x~}~eA has nonempty inte- 

X* * * rior, and { ~ }~A contains at least n independent elements, say {y~, Y2, . . . ,  yn}. 
�9 -~- * * Symmetry of {x*}~eA implies that  (4-y~, +Y2,. . - ,  Yn} C {x~ }~eA, which com- 

pletes our proof. | 

Next, we show that  for the space X with dim X = n, every ball-covering of 

Sx contains at least (n + 1) balls; and if X is smooth, then Sx always has a 

ball-covering consisting of n + 1 balls, which is the following. 
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THEOREM 2.3: Suppose that X is an n-dimensional space. Then: 

(i) Every ball-covering of Sx  contains at least n + 1 balls. 

I[, in addition, X is smooth, then 

(ii) Sx  admits a ball-covering consisting of n + 1 balls. 

Proos (i) Suppose that {B~}~e A is a ball-covering of Sx.  Again by the Sep- 

* X *  aration Theorem, for each B~ there exists x~ E Sx* such that  ( ~, x) > 0 for 

every x E B~. Thus, {x~'}~eA is a norming set of X, which in turn implies 

{x~'}~eh contains n + 1 affinely independent elements {y~,y~,. . . ,y~}.  (Oth- 

erwise, {x~'}~eA is contained in a hyperplane of X*, and this contradicts that  

{x~*}~eA is a norming set.) Therefore, {B~}~en has at least n + 1 elements. 

(ii) Since dim X = n < eo and since X is smooth, every point in Sx* is an 

* X *  exposed point of B x . .  We can choose n + 1 points {Xo,X~,... , n} in Sx* and 

{x0, X l , . . . ,  xn} in Sx  satisfying 

* * . X *  (a) {Xo ,X l , . . ,  n} are affinely independent; 

(b) the interior of co{x~, . . . ,x*}  contains the origin; 

(c) (x~,x~) = ~j for all 1 _< i , j  <_ n 

and 

(d) IIx, ll' = x ;  for all 0 < i < ~ .  

Indeed, by the Auerbach Theorem (see, for instance, [LT, Prop. 1.c.3]), there 

exist n points {xi}j~__l in Sx  and u points {x;}j~__l in Sx* such that  (x;,xi) = 

~ij" 
Let 

* - x j  , I I ~  n x~ll x o = a * where a - . 
j = l  

Then it is easy to show that  {x~, x l , . . . ,  x~} and {Xl , . . . , xn}  satisfy (a), (b) 

and (c). Since Sx  is smooth, we have IIxiIf' = x~ for i = 1 , 2 , . . . , n .  Choose 
* * n n Xo �9 Sx  such that  (x~,xo) = 1. Then IIx011' = x o. Thus {xj}j= o and {xi}i= o 

satisfy (d). 

* * . .  X *  Because {xo, x l , .  , ,~} is a norming set of X, there exists/3 > 0 such that  

max{(x; ,x) , . . . , (Xn,X)}  >_ t3llxll for all x E X. 

Thus, 
n 

s~ a U{* ~ s~: (.;,.) >_ ~}. 
j=0 
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Analogous to the proof of Theorem 2.2(i), we can show that  there are n + 1 

balls {Bj}j~ o not containing 0 such that  

Bj D { x E S x  : (x~,x)  >/3} f o r j = 0 , 1 , . . . , n .  | 

Remark 2.4: The proof of both Theorem 2.2(i) and 2.3(ii) closely depends on 

that  there are points {xi} and {x*} with [Ixill' = x* for a l l /  such that  the 

convex hull co{x~'} forms a norming set of X. The following counterexample 

explains that  these conditions are necessary to guarantee that  the corresponding 

theorems hold. 

Example 2.5: Let X = l~ or 12. Then the dual unit balls BzL and Bl~ , 

resp. have exactly 4 exposed points (+1, •  and (4-1, 0), (0, + l ) ,  resp. and the 

convex hull of each three of the four points does not contain the origin in its 

interior. This means that  the convex hull of each three of the four points is not 

a norming set of X,  and Sx  can never be covered by three balls not containing 

the origin. Thus, the answer to the problem "whether the unit sphere of every 

n-dimensional Banach space admits a ball-covering consisting of n § 1 balls" is 

negative in general. 

3. Ball-covering p r o p e r t i e s  o f  s e p a r a b l e  spaces  

For every separable Banach space X and for s > 0 there exists a countable ball- 

covering of Sx  with the radii of the balls at most s. On the other hand, if X is 

not separable, then for every ~ > 0 there exists an uncountable net {x~) C Sx  
such that  

- x ,  ll > 1 - for  a l l  # 

and this implies that  if a Banach space X admits a countable ball-covering for 

1 then X is separable. Sx  such that  the radii of all the balls are at most r < ~, 

So the following question arises. Is there an exact upper bound ro such that  if a 

Banach space X admits a countable ball-covering, the radii of the balls at most 

r < r0, then X is separable? In this section, we show r0 = 1 and it cannot be 

attained. 

THEOREM 3.1: Suppose 0 < r < 1. f f  Sx  has a countable ball-covering with 

radii at most r, then X is separable. 

Before starting the proof, we state the following two facts. 
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FACT 3.2: If the unit sphere Sx  of X has a countable ball-covering with radii 

at most p, then the sphere of a ball with radius r > 0 has a countable ball- 

covering with radii at most p .  r. 

Proof: Let {Bn} be a countable ball-covering of Sx,  and let Bn = B(xn, Pn) 
with Pn ~ P. Suppose B r is a ball in X with radius r > 0. Without  loss 

of generality, we can assume B r = B(0, r). If  y �9 B~ with ]]y][ = 1, then 

ry �9 rB(xn, Pn) = B(rxn, rpn), and yet, B(rxn, rp~) =- B~ does not contain 0 

if B(Xn, Pn) does not. Thus {Bn ~ } is a countable ball-covering of the sphere of 

B ~ and with radii rp~ at most r �9 p. 

FACT 3.3: If the sphere Sx  of X has a countable ball covering {Bn}n~=l with 

radii at most r, then for every e > 0, B x  can be covered by a countable family 

of balls with radii at most r + c. 

Proof: Suppose that  Sx has a countable ball-covering with radii at most r. 

Given ~ > 0, let {r~} C (0, 1] be a sequence which is dense in (0, 1]. By Fact 

3.2, the sphere of B(rn) =- rnBz  can be covered by a sequence of balls, namely, 
i oo i i i i at most r rn < r. Thus, {Bn}i=l, where B n = B(xn,r~) with radius r n 
i Bi {B~}i,~eN covers a dense subset of Bx ,  and further, { n,e} covers the whole 

unit ball Bx ,  where B~,~ = B(xin, r + e). 
Now, we are ready to prove Theorem 3.1. 

Proof of Theorem 3.1: Suppose Sx  has a countable ball-covering {B(x,~, rn)} 
with r~ ~ r < 1 for all n. Let 

~o=(1-r)/2, ~.~=2-m~0 

and 

s m = r + ~ - ~ e ~  < r +  e ~ = r + e o = l - e o < l  
i = l  i = l  

for all m C N. 

B By Fact 3.3, there is a sequence of balls { nl }n1=1 with radii at most sl  --- 

r + 61, whose union covers Bx.  Note for each nl  �9 N the sphere of Bnl has a 
countable ball-covering IBm Ioc with radii at most r(r + el). Fact 3.3 again t n l  i m = l  

B implies tha t  Bnl can be covered by a sequence { n1,~2 }n2=1 with radii at most 

r(r + ~1) + rc1 ( (r § E l )  2 ~- 821 . Clearly, (Bnl,n~}nl,n2E N covers Bx.  
Inductively, for each k ~ 2, we obtain countably many balls 

{Bnl,n2 . . . . .  n k  : Tt i  �9 N ,  i : 1, 2 , . . . ,  k }  

k - 1  k with radii at most (r + ~-~=1 ei) < (1 - ~0) k, whose union covers Bx.  
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For each fixed k E N, let Ak be the set of all centers of the balls Bnl ..... nk" 

We want to show A ~ Ak is B x .  = Uk=l dense in For every > 0, choose k C N 

such that  (1 - ~ o )  k < ~. For any x E B x ,  there exists ( n l , . . .  ,nk) E N k such 

that  x E Bnl ..... n~. Therefore, d (Ak , x )  < ( l - z 0 )  k < s. Thus, A is dense in B x  

and X is separable. | 

The following result shows that  there exists a non-separable Banach space 

whose unit sphere has a countable ball-covering with radii 1. Combining this 

with Theorem 3.1, we obtain the exact upper bound of radii to guarantee separa- 

bility of S x  with a countable ball-covering, and yet it follows from the following 

example that  the exact upper bound cannot be attained. 

Example 3.4: The unit sphere of l ~ with its natural norm admits a countable 

ball-covering with radii 1. 

Proof." Let e~ = (~n))  e 1 ~ denote the unit vector with 

~3!n) = (~nj _ l X, j = n, 
O, j C n .  

For every 1 < q < 2, we claim that  the sequence of balls + ~ {Bn }n=l forms a 

countable ball-covering of the unit sphere of l ~ ,  where 

B~n = B(q(:l:e,~), 1), n = 1 , 2 , . . . .  

In fact, for each y = (/~j) E l ~ with IlY[[ = 1, there exists/3i with I/3i[ > q - 1. 

We can assume ~j > q - 1. Thus Hqei - YH = II(q - fli)ei - hill, where hi = (aj)  

with [zj, 
a s = l O ,  j - - i .  

N o t e  IIhill = supj i I jl < llyll = 1 a n d  0 < q - H i  < 1. We obtain IIqei-yll  < 1. 

Hence y E B(qei,  1), and this says what we claimed is true. 

Remark 3.5: The differentiability hypothesis is also implicit in the proof of 

Example 3.4, since the norm I]" II of l ~ is Fr6chet differentiable at x -- (cU) E l ~ 

if and only if there exists 5 > 0 and i E N such that  I~il _> ]~jl + 5 whenever 

j r i (see, for instance, [DGZ], also [WCY]). Thus H" [[ is Fr6chet differentiable 

at +en for all n with the Fr~chet derivatives I[ + en[J' = =ken e (lOt),, and 

qei - y = (q - ~i)ei - hi is just the "orthogonal decomposition" of the one 

dimensional space Rei C l ~ and the hyperplane through the origin determined 

by the functional ei C (I~162 *. 
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4. N o n - s e p a r a b l e  spaces  w i t h  w*-separable  dua l  

Though l ~176 is non-separable and yet its unit sphere admits a countable ball- 

covering with radius 1, we observe that  its dual (l~ * = 11 @ c0 -c is w*-separable. 

More generally, we have 

PROPOSITION 4.1: I f  the sphere S x  of a Banach space X admits a countable 

ball-covering, then X* is w*-separable. 

Proof: It is an easy consequence of the Separation Theorem, since S x  can be 

covered by a sequence {Bn} of closed balls that  do not contain the origin. We 

obtain, by the Separation Theorem, a sequence {Xn} in X* such that  

(Xn,X)>0 for a l l x E B n ;  

B S x  C Un=l n implies that  {x*} separates points of X. Therefore, the span of 

{x*} is w*-dense in X*. | 

The following theorems (Theorems 4.3 and 4.5) show that if X is a Gateaux 

differentiability space or a locally uniformly convex space, the converse of Propo- 

sition 4.1 is also true. We first need a lemma. 

LEMMA 4.2: I [ X  is a Gateaux differentiability space and its dual is w*-separable, 

then there is a sequence {x*} of w*-exposed points of B x .  such that 

sup(x*,x) = [[x[[ [or all x e X.  
n 

Proof: Since X is a Gateaux differentiability space, the closed unit ball Bx* 

of X* is w*-sequentially compact (see [Fab, Th. 2.1.2]). Assume {z~} is a w*- 

sequentially dense sequence of Bx*.  

Let E c Sx* be the set of all w*-exposed points of B x . .  Then the convex 

hull co(E) of E is w*-dense in Bx*,  and further, co(E) is w*-sequentially dense 

�9 �9 oo co(E) such that  z,,  k ~ z ,  in Bx*.  Thus, for each z n there exists {Zn,k}k= 1 C * * 

(k ~ oc). Thus, {Zn,k}n,keN is a w*-dense countable subset of co(E). By 

definition of co(E), for each z*,k, there exist q(n, k) E N, Y~n,k,i) C E, Ai >_ 0 

for i = 1, 2, , q(n, k) with v'q(n'k) A' = 1 such that  
�9 " �9 A . ~ i = l  

q(n,k) 

* E * Zn,k : AiY(n,k,i). 
i----1 

Let A(n , k )  = 1y* ~q(n,k) t (n,k,i)Ji=l . Then A = Un,keNA(n,k)  is again a countable 
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subset of E which we denote by A = {x*} such that  

[ix H >_ sup(x ; ,x )  = sup (x*, x) _> sup (Zn,k,X} 
n x'cA n,kEN 

= sup ( x * , x > - -  sup (x* ,x )  = Ilxll. ' 
x*Eco(E) x*CBx* 

THEOREM 4.3: Suppose that X is a Gateaux differentiability space. Then the 

sphere Sx  admits a countable ball-covering if and only if X* is w*-separable. 

Proof: It suffices to show sufficiency. Since X is a Gateaux differentiability 

space, and since X* is w*-separable, by Lemma 4.2, there exists a sequence 

{x*} of w*-exposed points of Bx* such that  

sup(x~,x> = Ilxll for all x e X. 
n 

Due to Proposition 1.5, there exists a sequence {x~} C Sx  such that  

IIx ll'-- Xn, n = 1 , 2 , , , , ,  

where [[Xn[[' denote the Gateaux derivatives of [[. ]] at Xn for all n E N. 

Through an argument which is analogous to the proof of Theorem 2.2(i), we 

obtain 

Sx C U Bm,n 
m,nEN 

where B i n ,  n ~-  B(mxn, m - l /m)  for m, n C N. I 

COROLLARY 4.4: If a Banach space X admits an equivalent Gateattx smooth 

norm, then Sx  has a countable ball-covering if and only if X* is w*-separable. 

Proof: It suffices to note every Banach space admitting an equivalent Gateaux 

smooth norm is a Gateaux differentiability space ([Ph]). I 

Recall that  a Banach space is said to be locally uniformly convex if for every 

x C Sx  and {xn} C Sx,  IlXn + xll ~ 2 implies xn ~ x. 

THEOREM 4.5: Suppose X is a locally uniformly convex Banach space. Then 

Sx  has a countable ball-covering if and only if X* is w*-separable. 

Proof: Let {Xn}n~__l C Sx* be a w*-dense subset of Sx . .  Since norm-attaining 

functionals on X are always dense in the dual X* of X, we can assume for 

every n E N that  there exists xn E Sx  such that  (x*, Xn) = 1. Let Bm,~ = 

B(mx~, m - 1/m) for all m, n C N. 
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If there exists y with [[YI[ = 1 such that  

y C B m , ~  for a l lm,  n E N ,  

or equivalently, m - 1/m < []mx~ - y[[ for all m, n e N, w*-density of {x*} in 

S~: implies that  for every e > 0, there exists x* such that  

(Xn,y) > l - r  

In particular, letting c = 1/k for k = 1, 2 , . . .  we obtain a subsequence {x 'k} of 

{x*} such that  

X* ( ~ k , Y )  > 1 -  1/k. 

This implies 

2 > IIxn  + yLI > ( x L ,  + y) > 2 - 1/k. 

Locally uniform convexity of X in turn implies x~ k -* y as k ~ co, thus 

[[Xnk  - -  y/2[[ -~ �89 --* c~). This is impossible since 

Y r _ _ _ _ l B ( 2 x n ~  ' 1 = B ( x ~ , 3  
2 2 2,~ 

for all k E N. | 

Though we do not know whether w*-separability of X* can imply that  the 

sphere S x  has a countable ball-covering, we can show S x  admits a countable 

"ball-cut-like set" covering. 

Definition 4.6: (i) A set A in a Banach space X is said to be a bali-cut, if there 

exist an affine subspace M of X and a ball B in X such that  A = M A B. 

(ii) A is said to be ball-cut-like, if it is isometric to a ball-cut. 

THEOREM 4.7: H X* is w*-separable, then the sphere S x  of X admits a 

countable ball-cut-like set covering with diameters at most 2. 

Proof'. It suffices to note Example 3.4 and note that  every Banach space with 

a w*-separable dual is isometric to a closed subspace of l ~176 
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